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Abstract

In this paper the synthesis of a constant parameter output feedback
control law of constrained structure is set in a multiple objective huear
quadratic regulator (MOLQR) framework. The use of intuitive objective
Funclions such as model-following ability and closed-loop trajectory sen-
sitivity, allow multiple objective decision making techniques, such as the
surrogate worth trade-off method, to be applied. For the continnous-time
deterministic problem with an infinite time horizon, dynnnie compensalors
as well as static output feedback controllers can he synthesized using i de-
seent Anderson-Maore algorithin that is modificd Lo impose inear cquality
constraints on the feedback gains by moving in feasible directions. Resulls
of three dilferent examples are presented, inchiding @ wnigque reformulation
of the sensitivity reduction problem.

Introduction

In synthesizing a control law a designer has two objectives in mind
maximize performance and minimize the cost of implementation. A simpler
control law, which is less complicated and less costly to implement Lhan,
for example, a full state feedback controller, may be preferred by the
designer. The designer may have a number of structural alternatives in
mind such as full output feedback, decentralized control, or low order
dynamic compensation. In this paper the problem of minimizing the cost
of implementation is viewed as a problem of selecting a control law among
a number of alternative control law structures. The trade-ofls between the
performance objective and the cost of implementation can only be examined
fairly if the free parameters of each structure optimize the performance
objective. The performance objective itself may be characterized as a sct
of objectives. ‘The objectives considered in this paper are integral quadratic
objectives of stale energy, control energy, model following ability, trajectory
sensitivity, and subsystem objectives. These objectives are often conflicting,
therefore a multiple objective approach can be taken.

Algorithms for constant parameter output feedback controllers have
been extensively studied [1)-{17). Few algorithms however, allow the de-
signer to arbitrarily prespecify the control law structure [6), (7}, [11), [14],
[17). Fewer still consider the multiple objective nature of the problem {13]-
[t5]. Three functional scalarization methods have been applied to MOLQR
problems—the weighted sum, e-constraint, and goal attainment methods.
All three methods convert the multiple objective problem into a single ob-
jective problem. A single noninferior solution may then be found by solving
the single objective problem using any one of a number of nonlinear pro-
gramming techniques or algorithms that solve the necessary conditions.

The weighted sum method is used in this paper. The solution algorithm
used is a descent Anderson-Moore algorithm modified to move in feasible
directions. This algorithm was chosen for modification because it has been
shown by example to be faster than the Davidon-Fletcher-Powell method
(8], and because proofs of convergence to a local stationary point of the
cost function of Anderson-Moore type algorithms have been reported on
8], [11] (these proofs are contested however in [15].)

This paper is organized into two parts. In part one, the constrained
optimal output feedback problem is formulated and a solution algorithm is
presented. In part two, multiple objective LQR problems are formulated
and results of examples are summarized.

1.0 Optimal Controllers of Constrained Structure
1.1 Full output feedback controllers

The linear dynamic multiple-input multiple-output plant model is in
the standard state space form

(1) = Az(t) + Bu(t)

1-1
y(t) = Cz(t) (-1
where z € R™ is the state vector, ¥ € R™ is the input vector, and y € RF is
the output vector. The outputs are assumed to be the sensor measurements.
The initial state, or initial condition, is given by x(0) = zo.
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The control baw is defined as

w(t) = = ulh) (1-2)
where (7 € RM*?

Phie objective Tunetion to he mimmized that will he constdered here is
defined as

G ) /M|J«"(/)Qf(/) Fal iy a0} dr (-

where €@ s a positive sein-definite nox o matrix, 0 s positive deliite
wex ne mateis, and both are symmetrics Tn order for (G rp) o be finite,
the states weighted by the matrix @ niust be vendered asymplotically stable
by application ol a finite amount of control energy

For any feedback gain matrix (7 that stabilizes the closed loop system
A= A~ BCC the value of the objective Tunction may be evaliated as

J(Grg) = 2l Ky (1-4)

= tr{ 1\'.1:0.1‘%']

where I is the unique positive semi-definite solution of the linear mainx
equalion
ATR + KA+ Q+ (GCYTRGC = 0. (1-5)

Thus what may have appeared to be a dynamic optimization problem
(eqs. (1-1)-(1-3)), is now formulated as a stalic objective function (1-4)
that is to be minimized with respect to G and K subject to the equality
constraints (1-5). Finally, the problem may be restated as: Given the
dynamic system (1-1), initial condition zq, and a control law of the form
u(t) = —Gy(t), choose G* to minimize the objective function J(G, zo).

The first-order necessary conditions are found by first forming the
Lagrangian

LG, K, L) = t{Kzoal} + u{[ATK + KA+ Q + (GCY RGCILTY (1-6)
where L € R™®" is a matrix of Lagrange multipliers. By using gradient

matrix operations [4], the first-order necessary conditions for G*, K'*, and
L* 1o be optimal are given by

aL ) . .

221 ~orGrcLCT - BTK*L*CT) = .

3G | [ L BTK L*CT| =0 (1-7)
DL | _ 2eye e 7w " .
3| =4 L4 L AT dzexf =0 (1-8)
aL Y AL re Tw . T

3L AT+ K"A" +Q+(GC)'RG*C =0 (1-9)

where A* = A — BGTC. Lquation (1-7) may be rewritten as
G = RIBTR L CT(CL ety (1-10)
The optimal cost is J*(G*, xo) = te{ N zp2xd}.

1.2 Output feedback controllers of constrained structure

A full output feedback formulation assumes all the elements of G
are free to be optimized. Although full output feedback uses only those
measurements that are available, it does not allow the designer freedom to
choose feedback paths. Feedback paths may be eliminated by constraining
clements of G to be zero. In addition, if the set of available measurements
is too restrictive, dynamic compensation may be necessary to stabilize
the system. Even if a constrained control law stabilizes the system, the
addition of a dynamic compensator may improve performance. Dynamic
compensators may be designed by augmenting the state and output vectors
and constraining appropriate elements of the output feedback matrix to be
210 OF one.



The only difference between the first-order necessary conditions for
optimality for a full output feedback controller (1-7)-(1-9) and an output
feedback controller of constrained structure {elements of & constrained to
be constant) is that only the partials of £ with respect to the free parameters
of 7 need to equal zero. The additional necessary condition G* € §2 must,,
of course, be satisfied.

In order to constrain the structure of an output feedback controller,
elements of the feedback gain matrix ¢ are constrained Lo be constant
These constraints are a special lorm of lincar equality constraints. Linear
equality constraints are useful for other purposes as well as constraining the
structure of the gain matrix. A robust control law for multiple plants can be
designed using a multiple objective approach by constraining corresponding
clements of the feedback matrix to be equal (section 2.4.3). Trade-offs
between closed-loop trajectory sensitivity and other LQR objectives can
also be examined by constraining clements of the feedback matrix to be
equal to cach other {section 2.4.5). The initial values of some clements
of the contro! vecior may be specified by realizing that the initial control
vector is u(0) = —GCz(0), [14]. Calise and Raman use linear equality
constraints to impose a degree of modal insensitivity on the closed loop
system [16].

The optinization problem lor the constrained optimal output feedhack
problem can be stated as: Given the dynamic system (1-1), initial condition
Iy, o controb faw of the form u(t) = =Gy(t), and the constraint set

Q= [GHG) = b =0, im0, (1-12)
where the scalar funetion M (G is a linear combination of the clements of
G. choose (* € 1 Lo minimize the objective function J(G, xg).

1.3 Solution Technique

Ta enforce the lincar equality constraints {1-12) the following penalty
function is defined m
v

HOEED IS (1-13)

i=1

The abjective function tu be minimized becomes J(G,zo) = J(G,z0) +
¥(G). The Moerder-Calise algorithm [11] may be applied directly to this
problem formulation. However with the penalty function method the solu-
tion is never feasible and the stationary points of J are not the stationary
points of J unless v{G) = 0. The constraints must be forced to be satisfied,
and then the resulting feasible solution evaluated. Increasing the weight-
ing factor v to a large value may cause problemns with convergence of the
algorithm.

[n order to avoid any problems associated with penalty functions, a de-
scent Anderson-Moore algorithm is modified to move in feasible directions
only. A feasible direction is obtained by projecting the unconstrained direc-
tion onto the linear equality constraints at each iteration of the algorithm.
Define the vector y as the vector of elemeants of the matrix G. The lnear
cquality constraints {1-12) can also be representer! by the matrix equation

Aex = b. (1-14)

If dp is the unconstrained direction at step & of the algorithm, then dy the
projected feasible direction is [24]

dp = =[I = AT(AATY P A die. (1-15)
Define AG 1o be the unconstrained direction and AG to be the pro-

jected direction. Tn this paper the following two constraints and associated
projections are used:

1} To constrain the gain element gi; equal to a constant ¢;;, the projection

is
AGij = 0. (1-16)

2) To coustrain g,; equal to gy, the projection is

Agi; + Agnr

AGij; = A = ( 3

). (1-17)

Two rules were used to change the sign of the elements of AG in order
to ensure an improvement in cost at each step of the algorithm:

1) For §i; unconstrained, change the sign of A7;; to ensure that

aJ
2L AGy; <. 1-18
. 9i; < (1-18)
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2) For the constraint Ag; = Afw, change the sign of hoth Agy; and Ay
to ensure that aJ )
~ du -~
2L Ay + A <0 (1-19)
Agij et

"T'o a first order approximation, this results in a reduction i cost along
cach vector of a basis formed by the unconstrained gains Agi; and the

constraints :&y,_, = Ziy;;,. Note Chial, in general, these type of “sign ehange’
rules only apply when the linear equalily constraints by (G)2 = 1. m are
independent.

130 The Algordhm

The modified deseent Anderson-Moore algonthim for compuoting €7 is:

0} Choose Gy € & such that A= A= BGC s stable. Set i = 0.

1) Solve (1-9) for A and (1-8) for ;.
2) Evaluale
AG = TR LT e ey -
3) Use equations (1-16) ad {1-17) Lo project AG, onto the coustraimt sel.

2 and oblan Aa',

4} Use rules (1-18) and (1-19) to change signs of elements of AG if
necessary, where
a4

= . o _ ptyye T
76 = 2ARGICLCT — BY KL, C"]

5} Set
Gip1n=Gi + OAé,‘.

where o € {0, 1) is chosen to ensure

Jig1 < Ji = w{Kizoz k).

6) Seti=i+1,gotol)

Practical methods for determining an initial stabilizing gain Gg may be
found in [9]. The algorithin was programmed in Turbo-Pascal on an IBM
PC-XT. Step 1 requires the solution of two Lyapunov equations {1-8} and
(1-9). See Smith [25], or the more eflicient algorithm of Bartels-Stewart
[26]. A method for selecting o is needed in step 8. The convergence proof
of Moerder and Calise [11] shows that there exists an o small enough so
that Ji41 < Ji. Thereforc the simplest method is to start with o = |
then reduce o if necessary to ensure a reduction in cost. The algorithm, as
described, lacks a stopping criteria, however the criteria {8J/38G,{ < ¢; or
Ji — Ji+1 < €2 may be used to stop the algorithin.

2.0 Multiob jective LQR. Problems
2.1 Problem statement

The problem is tc optimize simultaneously N objective functions. The
multiple objective problem, or vector optimization problem, is stated as

min{ /1(G), Jo(G). ... In(G)) (2-1)

where G is a vector (or matrix) of decision variable or optimizing parameter
values and Q is a constraint set. Each objective function J;(G) is an integral
quadratic objective function similar to J(G, zg). The explicit reference to
the initial condition z¢ is omitted for notational convenience.

If the objective functions are conflicting, which is often the case, the
global optimums of J;(G), ¢t = 1,..., N, are not achieved at the same G*.
Clearly there is no unique solution to the problem. However, a set Q* of
noninferior solutions (or Pareto optimal solutions), can be defined.

DEFINITION: A decision G” is said to be a noninferior solution to
the problem posed by (2-1), if there does not exist another G so that
Ji(G) < J;(G*), 5 = 1,2,..., N, with strict equality holding for at
least one j [18].

Therefore a noninferior solution is one in which a further optimization
of any J;(G) is at the expense of at least one of the others. (i.e., all J;(G)'s
cannot be reduced simultaneously). The concept of a noninferior surface is
graphically illustrated by the two objective, single decision variable problem
in figure 1 where objective functions Jy(g) and Ji(g) are plotted versus the
single decision variable g. The objective functions Ji(g) and Ja(g) achieve



their optimums at g} and g3 respectively. The values of g between g7 and

4% are nominferior solutions to the problem becanse a further decrease in
cither objective leads to an increase in the other. "The noninferior surface

{or trade-ofl surface) is plotted in the decision space in figure 2.

Thus the problem of finding a solution that is acceptahle to the control
systetn designer is redueed to finding an acceptable solution in the nonin-
ferior set. 27, rather than the entire feasible set, §2. To solve the overail
problem then, a technique for generating noninferior solutions is needed s
well as o technique for determining which noninferior solution the decision
maker (control systems designer) prefers.

2.2 Generating noninferior solntions

in this paper the weighted sum method is used. Noninferior solutions
are generated by solving a single objective problem that is the weighted
car of the N objective functions. The problem s staled as:

N N
y e (G, N =1, 0<uy <. 2-2
(1}_1&}1113‘_7 w (6 L <uy < (2-2}

Geometrieally, for a two objective problem, the solution of (2-2) s
represented by the elosest fine to the origin, of slope g fwy, that is Langent
to e noninferior sarface (lpgnre 2. For any set of weights satislymg
S = 0 the solution to (2-2) 1s a woninferior solntion.  However, the
weighted sun method fails to find all points o a nonconvex trade-off
surface. [n ligure 3 the noninferior solutions between points A and B cannol
be found using the weighted sum method. The weighted sum method has
the advantage that if the weighted sum of objective functions maintains the
siaunie form as a single objective function, an algorithm that applies Lo the
single objective problem may be directly applied to the multiple objective
problemn. This will be shown to be the case for MOLQR problems.

2.3 Deciding on an acceptable noninferior solution

Although a nonlinear programming algorithm may be used to find a
single noninferior solution, the problem of finding a noninferior solution
that is preferred by the decision maker (the control systems designer) must
still be addressed. In making a decision it is typically assumed the decision
maker maximizes aontility function e,

max UW(G), ..., In(G)] (2-5)

where [} is a monotonic decreasing function of the objective functions
Ji((), and Q* is the set of all noninferior solutions. There are many
interactive techniques that can be used for extracting from the decision
maker the additional information necessary to solve (2-5) [19]. A technique
which requires a minimum amount of information is the surrogate worth
trade-off (SWT) method [18], [19]. The SWT method uses the values of
the trade-off functions, defined as

aJ;

Aij = — 5
’ 8‘]1 GeN

(2-6)

in questioning the decision maker. The decision maker (DM) is asked a
vrade-off question such as: “Given levels of objectives J,(G),...,In(G)
how willing are you to trade Aj; units of J; to reduce J; by one unit?.” The
DM is questioned aboul a sequence of noninferior points until a point is
found such that the decision maker is indifferent to moving in any direction.

All iterative methods assume the decision maker can judge the worth of
the objectives Ji(G). For an MOLQR formulation to be valid the designer
rmust have enough understanding of each single objective in order to answer
the trade-off question effectively.

2.4 MOLQR formulations and examples

The purpose of this section is to formulate some useful multiple objec-
tive linear quadratic regulator (MOLQR) problems in which the designer
can adidress the trade-off question.

;

2.4.1 The general hinear quadratic regulator problem

The iutegral quadratic objective function

Il rg) = /ﬂm[rT(l)QJ:(t) + uT (1) Ru(t)] dt (2-7)

s a sum of terms
+qi; /nwx,(t)r,(t)dl ij=1,...,n (2-8)
ir“/omuk(t)u;(t)dt kl=1,...,m (2-9)

n "
/ i) dt,
0

[Cewa [ Tww -y

with the weights ¢;; > 0 and rg; > 0 chosen to ensure @ > 0, It > 0,
and hoth Q@ and R symmetric. The weights may be normalized so that
Zw qij + Z'.J vy = 1 Phus the solution to (2-7) may be interproted as
a noninferior solution to the multiple objective problem consisting of the
objectives weighted in (2-8) and (2-9). To arrive al a nonnferior selution
that is acceptable to the designer Lhe weights are changed and the problem
is solved again. However the objectives in (2-8) and (2-9) containing cross
terms (e.g., x;(t)z;(t), i # j) in general have no physical meaning to the
designer. Phus it s diflicalt, if nob impossible, for the designer Lo answer
Lhe question: “Are you willing to trade A,; units of J; for one unit of J,7"
The problenmay be reformulaled as follows: Consider objeetive Tanctions
of Lthe form

/ (zi(1) — z; (1)) dt, /m(z-,(r) + x5 (1)t (2-10)
0 4]

/ (i (4) + wy (1)) dt (2-11)

Ju

A standard LQR objective function (2-7) is obtained by weighting these
six terms such that € > 0, ¢ > 0, and both @ and 12 are synunetrie, The
integrands of the ategral equations o (2-10) sued (2-11) are positive for
all £, therelore weighting the objectives in (2-10) hy o, 2 0 cnsures thal
¢ > O and weighting the objectives i (2-11) by weights v, > 0 ensures
that 2 00 " This observation motivates the following theorem

THEOREM 24

Given amultiple objective linear quadratic regulator (MOLQRY proh-
lem that is defined as a weighted suni ol objjective Tunctions as

J(G) = /n (T (0Qz(t) + u (¢) Ru(t)) dt

the noninfcrior surface between the N objectives J; is convex for a full state
feedback control law if for every set of weights that satisfies

DNo<u; < i=1,... N

2) T wi =1
the penalty matrices @Q and 12 satisly
3) Q positive semi-definite (Q > 0), and symmetric
4) R positive definite (£ > 0) and symmetric.
PROOY:

The proof is by contradiction. Assume that the noninferior surface is
nonconvex. Then there must exist a set of weights such that there are two
(or more) different G* that minimize J(G). By assumption, for cvery set
of weights satisfying 1) and 2), Q@ > 0 and R > 0, therefore the minimum
of J{G) is unique. Thus there does not exist a set of weights satisfying 1)
and 2) which results in two (or more) different G* minimizing J(G). The
noninferior surface therefore must be convex.

The objectives in (2-10) and (2-11) have more meaning to the designer,
in that they are easier to trade-off, than those of (2-8) and (2-9).

2.4.2 Integrated control system design

Integrated control system design deals with the integrated design of
subsystem controllers. The overall system is viewed as consisting of { sub-
systems with the system state and control vectors z(t) and u(t) separated
into subsystem state vectors z;(¢) and control vectors u,(t), i = 1,...,L
Each subsystem has a different objective function

J,(G):/O (X ()Qizi(t) + ul (1) Riwi(1)] dt. (2-12)

To solve this problem using the weighted sum method the single objective

{
J(G) = Y wii(G), 0<w <1 (2-13)
i=1

which is of the form (2-7), is minimized subject to any constraints on the
control law. The weighting matrices @ and R take on the form

Q = block diag{wiQ1, w2Q2, ..., wiQr}

. , (2-14)
IR = block diag{w) 0y, w, Re, ..., wii}.

ORIGINAL PAGE IS
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Fennel and Black compute a single noninferior point for an integrated
airframe and propulsion control problem using the weighted sum method
{23]. The weights were chosen to be the inverse of the optimums of the
single objective problems, ie., w; = 1/J where J® is the optimum for
the single objective problem of ninimizing J;. The objective funclion was
optimized for a full state feedback structure by solving a Riccati equa-
tion. Suboptimal solutions of different structures, including a decentralized
structure, were obtained by zeroing elements of the optimuin full state feed-
back gain matrix. Caglayan, Halyo, and Broussard reformulate Fennel and
Black’s integrated airframe and propulsion control problem as a discrete
time stochastic problens {10, The weighted sum of objective funclions is
optimized subject to a decentralized control law using an iterative algo-
rithm developed 1 {10]. Nowever, neither of the above references ([10],
[23]) investigale the trade-offs between airfraine and engine performance,
or the trade-offs between controllers of different structures. This was done
in [27] using the modified algorithm. The trade-ofls are summiarized in fig-
ure 4. Significant cost reduction was obtained using the modified algorithm
compared to the suboptimal (echniques in (23], table 1.

2.4.3 Multiple vegume condrol system design

In a mualtiple regime control system design problem it is assumed that
the plant may be any plant in a finite set of { tine-invariant plants, ‘The
problem is to find the best control law that simultancously optimizes the
performance objectives of each plant in the sel. Each plant has a different
objective function

J(Gy = /‘"‘"{L-;"(z)qir.(z) +ul () Rig(1)] dt (2-15)

o)
where z;(t) and u;(t) are the state and control vector for the ith plant. To
solve this problem using the weighted sum method, vectors z(t), y(t), and

u(t) are defined which consist of the vectors z;(2), vi(t), and u;(2), of the {
plants. The scalar objective function J{G) then satisfies (2-13) and (2-7)
with weighting matrices

Q = block diag{w @1, w2Q2, ..., wiQ;)}

(2-16)
12 = block diag{w Ry, walta, ..., w R}
{n order to find the single best control law for all the plants in the set, the
control laws of the plants must be constrained to be equal to each other by
the constraint
G = block diag{G,, Gz, ...,Gi}

2-17
Gy =Gy=---=G. ( )

The plants in the set could represent different operating conditions or
failure modes. The expected cost E{J} = 3", p; Ji(G) could then be min-
imized, where p; is the probability of occurrence of plant 1. In terms of
decision theory, the problem is now one of decision making under uncer-
tainty. The expected cost should be modified to include a weighting term
w, for each term p;J;(G). The term w; is determined based on the decision
makers trade-offs. For example the decision maker may be unwilling to take
the risk of incurring a large cost J:(G) even if there is a small probability
of occurrence of plant .

Fleming and Pashkevich use the goal attainment method to design a
controller for a robot arm that operates in three different regimes [13). The
weighting coefficients w; = J;, where J is the single objective minimum,
were chosen so that the same degree of under-attainment is achieved in each
objective. In [27] a proportional plus integral controller is tuned for two
possible plants, G1(s) = (1/s + 1), Ga(s) = 2/(4s + 1). The objective is to
minimize the model following error of the closed loop step input response
of both plants, where the model is Gm(s) = 36/(s? + 7.2s + 36). A slowly
decaying exponential is used to approximate a step input. The trade-off
surface between model-following objectives J,(G) and J2(G) is shown in
figure 5. The closed loop step responses for both plants for a weighting
factor of .5 is shown in figure 6. Greater model-following for plant 2 may
be obtained (at the expense of plant 1) by solving the problem for a weight
of < .5.

2.4.4 Model-following objectives
If a model of the desired closed-loop plant is known, the model-
following objective

[ S En0) - ) Quzm(t) - 2(0) dt, (2-18)

may be used to minimize model-following error where zp(t) is the state
vector of the model. The problem can be formulated by defining a state
vector which includes both z(t) and z,(t).

The ¢-constraint method is used by Fleming [14] on two flight control
system examples. A longitudinal controller for a helicopter is designed by

ORiGal
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minimizing a modekfolowing terin subject to control encrgy con-
straints on each of the helicopter’s two inputs. In the second example
a control system for an acrodynamically unstable aircrafl is designed by
tinimizing sensitivily subject to constraints on model-following errors and
control energy. The trade-offs between madel-following and sensitivity are
exatnined.

2.5 Closed-loop trajectory sensilinly as an objeeting

Consider systems of the form

2(t) = A(p)z(l) + B(p)u(t)

* €
) = C'x(l) (219)
where z(t), u(t), and y(t) are defined earlier (1-1) and p € K" is a vector
of parameters. To simplify notation only the single parameter case will be
discussed below although the results casily extend Lo the nniltiple paraineter
case. The closed-loop trajectory sensilivity due to changes in a parameter
Pty be reduced by adding (he term

/‘m du "'( & o
o D (2-20)

to the ohjective funclion {2-7) [20], [22]. The closed-loop trajectory sensi-
Lvity function Si(2) = dx{8)/dp; is described by the sbate cquations

AA(p)
o

N (')IJ(];)” du(l)
2(t) + T M0+ U(p)—am (2

$1(1) = Ap)Si(0) +
S1(0) = 0.

The term 8u(t)/8p; depends on the form of the control law. Fleming and
Newmann [20] augment the state vector z(1) with the sensitivity vector
S1(t). A full state feedback controller is then

u(t) = —Fiz(t) - F25:(¢). (2-22)

To implement this control law S (¢) must be simulated. However when the
control law (2-22) is substituted into (2-21) a term 95,(1)/8p; appears.
Fleming and Newmann neglect this term. Hafez and Loparo [22] derive the
necessary conditions for optimality for the control law

u({t) = —Fz(t). (2-23)

Unfortunately the algorithm of section 1.3.1 cannot be directly applied to
the necessary condition in [22] because the matrix Q is a function of the
feedback gain matrix F.

However, the problem can be put inte a form in which the algorithm
can be applied directly. This is done by augmenting the control vector u(t)
with 8u(t)/8p; and constraining the control law so that (2-21) holds. Given
the control law (2-23) the formula for du(t)/dp, is

out) _

5o = ~FSi) (2-24)

Substituting (2-24) into {2-21) and evaluating at p = p the state equations
describing S} (t) become
Si(t) = AS)(t) + A2(t) — Byu(t) — Bus, (1) (2-25)

where the input ug, (t) = 8u(t)/8p; = —FS\(t) has been defined and the
following notation has been used

9A(p) 3B(p)
A—Apo, Ay = 1 B_Bpo, B, = 2-26
®") ! 8, po ") ! 8py po ( )

The problem is then formulated as an optimal output feedback problem
with a constrained control law as follows:

(i%) = (ffx fnt) (szx((tt))) * (1? 103) (uZEt()t)>

yt)=1 ( ;1(&))) (2-27)
(o)== (5 2)(5%)
(34) (25 e

The closed-loop trajectory sensitivity may be further reduced by in-
cluding a dynamic compensator with state vector z(t) described by

(Z((/t))): (,}f /1‘1) (:ﬁ;) (2-29)




therefore
Ju(t)y 02 az(t) N
G = e (2-30)

Uhe state veetor must be further extended by the compensator state trajec-
tory sensitivity function N, (1) = 92(8)/dp, . leading Lo the Tollowing state
cquations
dx(t
S0 = ASL O+ B, T(__) . (2-31)
o

The state equation for Sy(¢) is found by defining the input
du(l)

us, (1) = (_)}‘I» = S0+ 1S, (). (2-12)

e veformulated problm for optimizing (2-7) plus (2-20) subject to the
control taw (2-29) is:

2 s R VR VR r o0 0 0 u

: I U AV : 0o / 0 0 z

5, I O T I V! S * o0 0 s,

S, (I (I VI Sy, o o0 0 S,

n / 1 0] 0 r

H B A 00 ¥ .
ws, | L0 0 kol 'y (2-33)
o 0 0 oA, S,

Q = block ding{Q.0,Qy,0} B =block ding{f2,el,cl el }  (2-34)

It s important to note that in some cases greater insensitivily of the
response due Lo a change in commanded variables might be obtained using
spen-loop compensation as opposed to feedback control. The closed-loop
wrajectory sensitivity to additional paraineters p; may be considered by
extending the state vector with the sensitivity functions S;(t).

The closed-loop trajectory sensitivity to the relative position of the
center of gravity of an unstable aircraft is investigated in references [21],
1], and {27]. Results using the modified algorithm [27], for a full state
feedback control law, are presented in tables 2 and 3, and fligures 7 and 8.
The objective lunction is J = (1 —w)J, +wt, + Jy, where Jy, is the model
following error, J, is the sensitivity measure, and J, is the control energy.
['he main trade-ofl in the reduction of sensitivity is the increase in control
energy.

3.0 Suminary

In this paper the synthesis of a linear output feedback control law of a
specified structure has been set in a multiple objective framework. The de-
signer may trade-off any number of individual integral quadratic objectives
such as state energy, control energy, model-following, trajectory sensitiv-
ity, and subsystem objectives. Noninferior solutions may be generated by
applying the modified descent Anderson-Moore algorithm of section 2.5 to
a single objective problem that is the weighted sum of the objective func-
tions. Dynamic compensators as well as static output feedback controlfers
can be designed using linear equality constraints on the parameters of the
ontput feedback matrix to impose the structural constraints.
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TABLE 1. - COMPARISON OF COSTS BETWEEN REFERENCE [23] AND
CONSTRAINED OPTIMIZATION, FOR THE INTEGRATED AIRFRAME
AND PROPULSION CONTROL EXAMPLE, « = 0.4848

Controller

Reference [23]

Constrained optimization

structure
* * *
J Ja Je J Ja Je
Centralized 1367 29.89 2624 ——— | - _——
Decentralized 3330 | 29.40 | 6422 1373 26.95 2641
st4(.1) 1759 33.10 | 3329 1444 42 .37 2763

TABLE 2. - OPTIMAL COSTS FOR MODEL FOLLOWING VERSUS

SENSITIVITY EXAMPLE OF SECTION 2.4.5

w JS Jm Ju J
0.0 | 5.2697 | 4.1116x10-12 | 7.767x10-2 | 4.1116x10-12
0.1 1277 | 1.2278x10-01 | 2.086x10-1 | 1.2303x10-01

TABLE 3. - OPTIMAL GAINS FOR MODEL
FOLLOWING VERSUS SENSITIVITY
EXAMPLE OF SECTION 2.4.5

W 9 972 973 94
0.0 | -1.4760 | 0.307 | -0.238 | -0.903
0.1 1 -.0739 | -3.297 | -3.436 | -2.308
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FIGURE 1. - OBJECTIVE FUNCTIONS J;(g) AND Jp(g) VERSUS

SINGLE DECISION VARIABLE g.
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FIGURE 2. - NONINFERIOR SURFACE BETWEEN THE TWO OBJEC-
TIVES J1(9) AND J,(9) OF FIGURE 1.
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FIGURE 3. - THE WEIGHTED SUN METHOD APPLIED TO A NON-
CONVEX TRADE-OFF SURFACE.
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FIGURE 4. - NONINFERIOR SURFACES FOR THE INTEGRATED
AIRFRAME AND PROPULSION CONTROL EXAMPLE OF SEC-

TION 2.4.2,
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FIGURE 5. - NONINFERIOR SURFACE FOR NOMINAL VERSUS OFF-
NOMINAL PERFORMANCE EXAMPLE OF SECTION 2.4.3.
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FIGURE 6. - STEP RESPONSES. EXAMPLE 2.4.3.
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